Обобщенные рэмсиевские методы подавления полевых сдвигов в атомных часах на основе эффекта когерентного пленения населенностей

Д.В.Коваленко, М.Ю.Басалаев, В.И.Юдин, Т.Занон-Виллет, А.В.Тайченачев

Исследуется возможность подавления полевых сдвигов в рэмсиевской спектроскопии когерентного пленения населенностей (КПН) методами обобщенной автобалансной рэмсиевской спектроскопии (ОАБРС) и комбинированного сигнала ошибки (КСО). Рассмотрено возбуждение когерентным бихроматическим полем КПН-резонансов в открытой Λ -системе с «ловушечным» состоянием. На основании проведенного строгого математического доказательства и численных расчетов показано, что использование данных методов приводит к полному подавлению полевого сдвига и его флуктуаций. Реализация методов ОАБРС и КСО в КПН-часах позволит значительно повысить их точность и долговременную стабильность. Указанные методы также могут быть применимы в атомных КПН-магнитометрах и интерферометрах.

Ключевые слова: рэмсиевская спектроскопия, резонансы когерентного пленения населенностей, полевые сдвиги, атомные часы и магнитометры.

1. Введение

Атомные часы – важные и востребованные квантовые устройства, обеспечивающие высокоточные измерения частоты и времени [1-3], - имеют широкий спектр приложений в таких областях, как навигация (GPS, ГЛОНАСС, GALILEO), системы связи и передачи информации, геодезия, проверка фундаментальных физических теорий и т.д. [4-7]. Отдельный класс среди атомных часов представляют часы на основе эффекта когерентного пленения населенностей (КПН) [8-12], суть которого состоит в следующем. При взаимодействии с когерентным бихроматическим полем атомы переходят в так называемое темное (непоглощающее свет) состояние. Формирование последнего происходит, когда разность оптических частот поля варьируется вблизи сверхтонкого расщепления основного состояния, что приводит к появлению узкого провала (пика) в сигнале поглощения (пропускания). Использование оптических ячеек с буферным газом или антирелаксационным покрытием позволяет значительно уменьшить ширину КПН-резонанса, которая обычно составляет 0.1-1 кГц. Главными преимуществами КПН-часов являются компактность и малое энергопотребление благодаря применению полностью оптической схемы воз-

Д.В.Коваленко, А.В.Тайченачев. Новосибирский государственный университет, Россия, 630090 Новосибирск, ул. Пирогова, 2; Институт лазерной физики СО РАН, Россия, 630090 Новосибирск, просп. Акад. Лаврентьева, 15Б; e-mail: dvk.laser@yandex.ru

М.Ю.Басалаев, В.И.Юдин. Новосибирский государственный университет, Россия, 630090 Новосибирск, ул. Пирогова, 2; Институт лазерной физики СО РАН, Россия, 630090 Новосибирск, просп. Акад. Лаврентьева, 15Б; Новосибирский государственный технический университет, Россия, 630073 Новосибирск, просп. Карла Маркса, 20

T.Zanon-Willette. Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA, F-75005, Paris, France

Поступила в редакцию 16 марта 2021 г.

буждения радиочастотного перехода без использования микроволнового резонатора [13–15].

Основная цель исследований, посвященных атомным часам, - повышение стабильности частоты, характеризующей случайные изменения эталонной частоты во времени. Во многих случаях ключевым фактором, ограничивающим стабильность и точность атомных часов, является полевой сдвиг частоты часового перехода за счет динамического эффекта Штарка; при этом флуктуации мощности излучения приводят к нестабильности частоты осциллятора. Данная проблема, в частности, может быть решена с помощью рэмсиевской спектроскопии [16], включая ее различные модификации и обобщения. Так, для подавления полевых сдвигов в одной из модифицированных рэмсиевских схем, описанной в работе [17], предложено использовать импульсы различной длительности, при этом второй импульс является композитным (т. е. его часть имеет фазу, сдвинутую на π). Такая «гиперрэмсиевская» схема была успешно реализована в оптических часах и продемонстрировала подавление полевого сдвига на несколько порядков [18, 19]. В дальнейших вариантах развития гиперрэмсиевского подхода использовались другие различные способы формирования сигнала ошибки [20-24].

Относительно недавно были разработаны новые методы подавления полевых сдвигов, такие как автобалансная рэмсиевская спектроскопия (АБРС) [25] и ее обобщение (ОАБРС) [26], а также комбинированный сигнал ошибки (КСО) [27]. Данные спектроскопические схемы «не страдают» от эффектов релаксации в атомной среде, импульсных флуктуаций, зависящих от времени, и других неидеальностей процедуры опроса атомов. Они основаны на возбуждении атомов двумя рэмсиевскими последовательностями с разными временами свободной эволюции (темные времена). В методе ОАБРС используются две петли обратной связи, одна из которых служит для регулировки частоты часового сигнала, а другая – для управления некоторым сопутствующим, хорошо контролируемым параметром, связанным с рэмсиевскими импульсами. Одновременная стабилизация частоты атомных часов и сопутствующего параметра обеспечивает подавление полевого сдвига. В [25] была предложена и реализована схема стабилизации частоты, в которой в качестве сопутствующего параметра используется дополнительный сдвиг фазы поля во время действия второго рэмсиевского импульса. В теоретической работе [26] показано, что существуют и другие альтернативы при выборе сопутствующего параметра. В отличие от метода ОАБРС, в КСО [27] используется только одна петля обратной связи, и сигнал ошибки для стабилизации частоты формируется путем вычитания с соответствующим калибровочным коэффициентом двух обычных сигналов ошибки для каждой рэмсиевской последовательности. Использование метода АБРС позволило достичь в КПНчасах с цезиевой паровой ячейкой стабильности на уровне 10⁻¹⁵ [28, 29]. Методы ОАБРС и КСО были экспериментально реализованы в работах [30,31] для лазерноохлажденных атомов рубидия, у которых полевой сдвиг был подавлен более чем на порядок.

Следует отметить, что для оптических часов теоретический анализ проводился в рамках двухуровневой атомной системы [26, 27], а для КПН-часов – в рамках замкнутой трехуровневой Л-системы [32]. Однако при традиционной схеме накачки атомной среды однонаправленным световым циркулярно-поляризованным σ^+ - или σ^- -полем в случае D₁-линии атомов щелочных металлов существует так называемое ловушечное состояние («карман»), т.е. подуровень основного состояния с максимальной или минимальной проекцией полного углового момента атома. Наличие данного состояния приводит к ухудшению параметров КПН-резонанса (уменьшению амплитуды и контраста), поскольку атомы, которые в результате процессов оптического возбуждения и релаксации возбужденного состояния накаливаются в «кармане», оттуда уже не возбуждаются и не участвуют в формировании темного состояния. Поэтому важно было обобщить исследование, проведенное в работе [32], на случай открытой А-системы с учетом ловушечного состояния.

В настоящей работе получены аналитические результаты, строго доказывающие применимость методов ОАБРС и КСО в КПН-часах в рамках открытой Λ-системы с ловушечным состоянием и сопровождающиеся различными численными расчетами. Для метода ОАБРС, в частности, рассмотрен вариант, когда сопутствующий параметр является дополнительным частотным прыжком в течение действия обоих рэмсиевских импульсов (накачки и детектирующего).

2. Теоретическая модель

В качестве теоретической модели атомной среды рассмотрим открытую А-систему (рис.1) с учетом наличия ловушечного состояния (состояние |4>), взаимодействующую с рэмсиевскими импульсами (рис.2) бихроматического поля

$$E(t) = E_1(t)e^{-i(\omega_1 t + \varphi_1)} + E_2(t)e^{-i(\omega_2 t + \varphi_2)} + c.c.$$
(1)

КПН-резонанс возбуждается при условии, что разность частот $\omega_1 - \omega_2$ варьируется вблизи частоты сверхтонкого расщепления $\omega_{\rm hfs}$ перехода между подуровнями $|1\rangle$ и $|2\rangle$

Рис.1. Схема открытой Л-системы:

 ω_1 и ω_2 – частоты резонансных оптических полей; $\Delta_{\rm sh}$ – полевой (штарковский) сдвиг частоты часового перехода; γ_{31} , γ_{32} и γ_{34} – скорости спонтанного распада населенности из состояния |3⟩ на состояния |1⟩, |2⟩ и |4⟩ соответственно; Γ – скорость распада когерентности между состояниями |1⟩ и |2⟩; состояние |4⟩ – ловушечное состояние.

Рис.2. Рэмсиевская схема для спектроскопии КПН-резонансов. Первый импульс накачивает атомы в темное состояние, второй импульс детектирует спектроскопическую информацию.

(часовой переход) основного состояния. Временную динамику атомной системы будем описывать, используя формализм атомной матрицы плотности в базисе состояний { $|j\rangle$ } (см. рис.1):

$$\hat{\rho}(t) = \sum_{m,n} |m\rangle \rho_{mn}(t) \langle n|.$$
⁽²⁾

В приближении вращающейся волны уравнения для матрицы плотности имеют следующий вид:

$$\partial_{t}\rho_{11} = p_{1}\Gamma \operatorname{Tr}[\hat{\rho}] - \Gamma\rho_{11} + \gamma_{31}\rho_{33} + \mathrm{i}(\Omega_{1}^{*}\rho_{31} - \Omega_{1}\rho_{13}),$$

$$\partial_{t}\rho_{21} = [-\Gamma + \mathrm{i}(\delta_{\mathrm{R}} - \Delta_{\mathrm{sh}})]\rho_{21} + \mathrm{i}(\Omega_{2}^{*}\rho_{31} - \Omega_{1}\rho_{23}),$$

$$\partial_{t}\rho_{22} = p_{2}\Gamma \operatorname{Tr}[\hat{\rho}] - \Gamma\rho_{22} + \gamma_{32}\rho_{33} + \mathrm{i}(\Omega_{2}^{*}\rho_{32} - \Omega_{2}\rho_{23}),$$

$$\partial_{t}\rho_{31} = (-\gamma_{\mathrm{opt}} + \mathrm{i}\delta_{1})\rho_{31} + \mathrm{i}\Omega_{1}(\rho_{11} - \rho_{33}) + \mathrm{i}\Omega_{2}\rho_{21},$$

$$\partial_{t}\rho_{32} = (-\gamma_{\mathrm{opt}} + \mathrm{i}\delta_{2})\rho_{32} + \mathrm{i}\Omega_{2}(\rho_{22} - \rho_{33}) + \mathrm{i}\Omega_{1}\rho_{12},$$
(3)

$$\partial_t \rho_{33} = -(\Gamma + \gamma_{\rm sp})\rho_{33} + i(\Omega_1 \rho_{13} - \Omega_1^+ \rho_{31}) + i(\Omega_2 \rho_{23} - \Omega_2^+ \rho_{32}),$$

$$\partial_t \rho_{44} = -(p_1 + p_2) \Gamma \mathrm{Tr}[\hat{\rho}] + \Gamma(\rho_{11} + \rho_{22} + \rho_{33}) + \gamma_{34} \rho_{33},$$

$$\rho_{12} = \rho_{21}^*, \quad \rho_{13} = \rho_{31}^*, \quad \rho_{23} = \rho_{32}^*.$$

Здесь $\Omega_1 = d_{31}E_1e^{-i\varphi_1}/\hbar$ и $\Omega_2 = d_{32}E_2e^{-i\varphi_2}/\hbar$ – частоты Раби для переходов $|1\rangle \rightarrow |3\rangle$ и $|2\rangle \rightarrow |3\rangle$ соответственно (d_{31} и d_{32} – матричные элементы оператора электрического дипольного момента); $\delta_1 = \omega_1 - \omega_{31}$ и $\delta_2 = \omega_2 - \omega_{32}$ – однофотонные отстройки лазерных полей; $\delta_R = \omega_1 - \omega_2 - \omega_{hs}$ – двухфотонная (рамановская) отстройка; Δ_{sh} – полевой (штарковский) сдвиг частоты часового перехода во время действия рэмсиевских импульсов; γ_{opt} – скорость затухания оптических когерентностей (из-за процессов спонтанного распада, столкновений с буферным газом и т.д.); γ_{31} , γ_{32} и γ_{34} – скорости спонтанного распада населенности из состояния |3⟩ на состояния |1⟩, |2⟩ и |4⟩ соответственно; γ_{sp} – скорость спонтанного распада возбужденного состояния |3⟩ (в случае замкнутой атомной системы $\gamma_{sp} =$ $\gamma_{31} + \gamma_{32} + \gamma_{34}$); константа Γ определяет скорость релаксации атомов (например, за счет пролетных эффектов) к изотропному распределению по подуровням основного состояния (в отсутствие светового поля); p_1 и p_2 – коэффициенты релаксации к данному изотропному распределению.

Представим систему линейных уравнений (3) в векторном виде:

$$\partial_t \boldsymbol{\rho} = \hat{L} \boldsymbol{\rho},\tag{4}$$

где вектор-столбец $\rho(t)$ сформирован из элементов матрицы плотности $\hat{\rho}(t)$ следующим образом:

$$\boldsymbol{\rho} = (\rho_{11}, \rho_{12}, \rho_{21}, \rho_{22}, \rho_{13}, \rho_{31}, \rho_{23}, \rho_{32}, \rho_{33}, \rho_{44})^T, \tag{5}$$

а матрица \hat{L} (лиувиллиан) (см. Приложение, выражение (П1)) определяется коэффициентами уравнений (3).

В качестве спектроскопического сигнала исследуется поглощение в течение детектирующего импульса (для $t > t_2$, см. рис.2), которое в приближении оптически тонкой среды пропорционально следующей величине:

$$A(t) = 2 \operatorname{Im} \{ \Omega_1(t) \rho_{31}(t) + \Omega_2(t) \rho_{32}(t) \}.$$
(6)

Сигнал, накопленный в течение детектирующего времени τ_d , вычисляется интегрированием выражения (6) по времени:

$$\bar{A}(\delta_{\rm R}) = \int_{t_2}^{t_2+\tau_{\rm d}} A(t) \,\mathrm{d}t \,. \tag{7}$$

С использованием стандартного определения скалярного произведения

$$(\boldsymbol{x},\boldsymbol{y}) = \sum_m x_m^* y_m$$

выражение (6) может быть записано следующим образом:

$$A(t) = (\boldsymbol{\Omega}(t), \hat{W}_{d}(t)\hat{G}_{T}\hat{W}_{p}\boldsymbol{\rho}_{in}), \qquad (8)$$

где вектор $\boldsymbol{\varOmega}$ определяется как

$$\boldsymbol{\Omega} = (0, 0, 0, 0, -i\Omega_1^*, i\Omega_1, -i\Omega_2^*, i\Omega_2, 0, 0)^T.$$
(9)

Вектор ρ_{in} соответствует начальному атомному состоянию. Операторы $\hat{W}_p = \hat{W}_p(t_1, t_0)$ и $\hat{W}_d = \hat{W}_d(t, t_2)$ определяют эволюцию атомов, взаимодействующих с импульсом накачки ($t_0 < t < t_1$) и детектирующим импульсом ($t > t_2$) соответственно. Оператор \hat{G}_T (см. (ПЗ)) описывает свободную эволюцию атомов ($t_1 < t < t_2 = t_1 + T$):

$$\hat{G}_T = \mathrm{e}^{L_0 T},\tag{10}$$

где лиувиллиан \hat{L}_0 (П2) формируется из уравнений (3)–(5) в отсутствие светового поля (т.е. когда $\Omega_1 = \Omega_2 = 0$ и $\Delta_{\rm sh} = 0$).

В экспериментах темное время *T*, как правило, значительно (на 2–4 порядка) превышает времена распада населенности возбужденного состояния и затухания оптических когерентностей, что соответствует условию $T \gg \gamma_{opt}^{-1} \gamma_{sp}^{-1}$. Поэтому в диагональных элементах матрицы \hat{G}_T можно принять, что $e^{-\gamma_{sp}T} \approx 0$ и $e^{-\gamma_{opt}T} \approx 0$. В этом случае оператор \hat{G}_T принимает вид

Рассмотрим схему стабилизации, в которой для формирования сигнала ошибки $S_{\rm err}(\delta_{\rm R})$ используются скачки (т.е. изменение ступенчатым образом) относительной фазы бихроматического поля ($\varphi_1 - \varphi_2$) перед вторым рэмсиевским импульсом. Используя формулы (7) и (8), запишем выражение для спектроскопического сигнала с учетом скачка фазы:

$$\bar{A}(\delta_{\mathrm{R}},\alpha_{\mathrm{l}},\alpha_{2}) = \int_{t_{2}}^{t_{2}+\tau_{\mathrm{d}}} (\boldsymbol{\Omega}(t), \hat{W}_{\mathrm{d}}(t) \,\hat{\boldsymbol{\Phi}}(\alpha_{\mathrm{l}},\alpha_{2}) \,\hat{G}_{T} \,\hat{W}_{\mathrm{p}} \boldsymbol{\rho}_{\mathrm{in}}) \,\mathrm{d}t, \quad (12)$$

где оператор фазового скачка для бихроматического поля имеет вид

$$\hat{\Phi}(\alpha_1, \alpha_2) =$$

(1	0	0	0	0	0	0	0	0	0)		
0	$e^{-i(\alpha_1-\alpha_2)}$	0	0	0	0	0	0	0	0		
0	0	$e^{i(\alpha_1-\alpha_2)}$	0	0	0	0	0	0	0		
0	0	0	1	0	0	0	0	0	0		
0	0	0	0	$e^{-i\alpha_1}$	0	0	0	0	0		(12)
0	0	0	0	0	$e^{i\alpha_l}$	0	0	0	0	·	(13)
0	0	0	0	0	0	$e^{-i\alpha_2}$	0	0	0		
0	0	0	0	0	0	0	$e^{i\alpha_2}$	0	0		
0	0	0	0	0	0	0	0	1	0		
0	0	0	0	0	0	0	0	0	1)		

Сигнал ошибки формируется как разность сигналов (12) для двух различных фазовых скачков:

$$S_{\text{err}}(\delta_{\text{R}}) = A(\delta_{\text{R}}, \alpha_{1}^{+}, \alpha_{2}^{+}) - A(\delta_{\text{R}}, \alpha_{1}^{-}, \alpha_{2}^{-})$$
$$= \int_{t_{2}}^{t_{2}+\tau_{d}} (\boldsymbol{\Omega}(t), \hat{W}_{d}(t) \hat{D}_{\boldsymbol{\Phi}} \hat{G}_{T} \hat{W}_{p} \boldsymbol{\rho}_{\text{in}}) dt, \qquad (14)$$

где верхний индекс «+» обозначает изменения фазы для первого скачка, а индекс «-» соответствует второму фазовому скачку. Оператор \hat{D}_{ϕ} в (14) определяется как

Здесь мы ввели обозначение для относительной фазы бихроматического поля:

$$\alpha_{\rm r}^{+} = \alpha_{\rm l}^{+} - \alpha_{\rm 2}^{+}, \quad \alpha_{\rm r}^{-} = \alpha_{\rm l}^{-} - \alpha_{\rm 2}^{-}.$$
 (16)

В соответствии с (11) и (15) получаем следующее выражение для матричного произведения $\hat{D}_{\phi}\hat{G}_T$:

$$\hat{D}_{\phi}\hat{G}_{T} = \exp(-\Gamma T)\hat{\Upsilon}_{T},\tag{17}$$

где матрица $\hat{\Upsilon}_T$ имеет вид

Тогда с учетом (17) сигнал ошибки (14) вычисляется по формуле

$$S_{\rm err}(\delta_{\rm R}) = \exp(-\Gamma T) \int_{t_2}^{t_2+\tau_{\rm d}} (\boldsymbol{\Omega}(t), \hat{W}_{\rm d}(t) \hat{\Upsilon}_T \hat{W}_{\rm p} \boldsymbol{\rho}_{\rm in}) \mathrm{d}t.$$
(19)

Таким образом, как следует из (18), сигнал ошибки чувствителен только к изменению относительной фазы $\alpha_r = \alpha_1 - \alpha_2$, но не зависит от фаз $\alpha_{1,2}$ по отдельности. Также отметим, что максимальная амплитуда сигнала ошибки (19) достигается для фазовых скачков $\alpha_r^+ = \pi/2$ и $\alpha_r^- = -\pi/2$.

В атомных часах частота стабилизируется в нуле сигнала ошибки для центрального рэмсиевского резонанса. Поэтому одним из ключевых параметров, влияющих на метрологические характеристики, является сдвиг частоты δ_{clock} , что соответствует решению уравнения

$$S_{\rm err}(\delta_{\rm R}) = 0 \tag{20}$$

относительно δ_{R} .

3. Обобщенная автобалансная рэмсиевская спектроскопия для КПН-резонансов

Схема стабилизации для метода ОАБРС содержит две петли обратной связи, действующие параллельно на попеременно сменяющихся рэмсиевских последовательностях с различными временами свободной эволюции T₁ и T_2 . Первая петля управляет частотой генератора (т.е. рамановской отстройкой $\delta_{\rm R}$), а вторая петля – некоторым сопутствующим параметром ξ , связанным с первым и/ или вторым рэмсиевским импульсом. Алгоритм ОАБРС организован как серия следующим циклов. Для рэмсиевской последовательности с временем свободной эволюции T_1 сопутствующий параметр фиксируется ($\xi = \xi_{\text{fix}}$), а частота стабилизируется в нуле первого сигнала ошибки $S_{\rm err}^{(T_{\rm l})}(\delta_{\rm R},\xi_{\rm fix}) = 0.$ Затем измерения проводятся для последовательности рэмсиевских импульсов с другим темным временем (T_2), когда ранее полученная частота фиксируется ($\delta_{\rm R} = \delta_{\rm fix}$) и сопутствующий параметр стабилизируется в нуле второго сигнала ошибки $S_{\rm err}^{(7)}(\delta_{\rm fix},\xi) = 0$. При повторении этих итераций оба параметра ($\delta_{\rm R} = \delta_{\rm clock}$ и $\xi = \xi$) в конечном итоге стабилизируются, что соответствует решению системы уравнений

$$S_{\rm err}^{(T_{\rm l})}(\delta_{\rm R},\xi) = 0, \quad S_{\rm err}^{(T_{\rm 2})}(\delta_{\rm R},\xi) = 0$$
 (21)

в отношении переменных $\delta_{\rm R}$ и ξ .

Покажем, что система (21) всегда имеет решение $\delta_{\rm R} = 0$. Подставляя выражение для сигнала ошибки (19) в (21), получаем

$$\int_{t_2}^{t_2+\tau_d} (\boldsymbol{\Omega}(t), \hat{W}_{\rm d}(t) \hat{\Upsilon}_{T_1} \hat{W}_{\rm p} \boldsymbol{\rho}_{\rm in}) dt = 0,$$

$$\int_{t_2}^{t_2+\tau_d} (\boldsymbol{\Omega}(t), \hat{W}_{\rm d}(t) \hat{\Upsilon}_{T_2} \hat{W}_{\rm p} \boldsymbol{\rho}_{\rm in}) dt = 0.$$
(22)

Из (18) следует, что в случае $\delta_{\rm R} = 0$ имеет место равенство для матриц $\hat{\Gamma}_{T_1}$ и $\hat{\Gamma}_{T_2}$:

$$\hat{\Upsilon}_{T_1}(\delta_{\mathsf{R}} = 0) = \hat{\Upsilon}_{T_2}(\delta_{\mathsf{R}} = 0).$$
 (23)

В этом случае система из двух уравнений (22) сводится к одному уравнению с неизвестным параметром *ξ*:

$$\int_{t_2}^{t_2+\tau_d} (\boldsymbol{\Omega}(t), \hat{W}_d(t) \hat{\Upsilon}_T(\delta_R = 0) \, \hat{W}_p \boldsymbol{\rho}_{in}) dt = 0, \qquad (24)$$

которое всегда имеет решение.

Таким образом, аналитически показано, что выбор соответствующего значения сопутствующего параметра позволяет полностью подавить полевой сдвиг часовой частоты ($\bar{\delta}_{clock} = 0$), стабилизируемой по КПН-резонансу. Данный результат не зависит от параметров рэмсиевских импульсов (амплитуды, формы, фазы), констант релаксации, ошибок в формировании фазовых скачков и т.д. Такая устойчивость метода к различным техническим ошибкам демонстрирует его высокую надежность.

Рис.3. Сигнал ошибки $S_{\rm err}^{(T)}(\delta_{\rm R}, \Delta_{\rm c}=0)$ в традиционной рэмсиевской схеме при различных значениях полевого сдвига $\Delta_{\rm sh}$ (*a*); сигнал ошибки $S_{\rm err}^{(T)}(\delta_{\rm R}=0, \Delta_{\rm c})$ для стабилизации компенсирующего частотного прыжка $\Delta_{\rm c}$ (*b*); сигнал ошибки $S_{\rm err}^{(T)}(\delta_{\rm R}, \Delta_{\rm c}=\bar{\Delta}_{\rm c})$ для частотной стабилизации компенсирующего частотного прыжка $\Delta_{\rm c}$ (*b*); сигнал ошибки $S_{\rm err}^{(T)}(\delta_{\rm R}, \Delta_{\rm c}=\bar{\Delta}_{\rm c})$ для частотной стабилизации рамановской отстройки в методе ОАБРС с компенсирующим частотным прыжком (*b*); зависимость частотного прыжка $\bar{\Delta}_{\rm c}$ от сдвига частоты часового перехода $\Delta_{\rm sh}$ (*c*). Численные зависимости рассчитаны для светового сдвига рамановского перехода $\Delta_{\rm sh}/\Gamma=0$ (*I*), 7 (*2*) и 21 (*3*). Другие параметры модели: $\Omega_1 = \Omega_2 = 0.3\gamma_{\rm sp}$, $\gamma_{31} = \gamma_{32} = \gamma_{34} = \gamma_{\rm sp}/3$, $\gamma_{\rm opt} = 50\gamma_{\rm sp}$, $\Gamma = 5 \times 10^{-5}\gamma_{\rm sp}$, $p_1 = p_2 = 1/3$, $T_1 = 0.5\Gamma^{-1}$, $T_2 = 0.1\Gamma^{-1}$, $\tau_{\rm p} = \infty$ (стационарное состояние), $\tau_{\rm d} = 0.1\Gamma^{-1}$, $\alpha_{\rm r}^{\pm} = \pm \pi/2$.

В качестве частного случая применения метода ОАБРС для КПН-резонансов рассмотрим автобалансную схему, в которой сопутствующий стабилизируемый параметр является дополнительным «прыжком» в разности частот $\omega_1 - \omega_2$ в течение действия обоих рэмсиевских импульсов, т. е. $\xi = \Delta_c$. Частотный прыжок ($\Delta_c = \bar{\Delta}_c$), который полностью подавляет полевой сдвиг ($\bar{\delta}_{clock} = 0$), может быть найден из уравнения (24).

На рис.3,*а* показано поведение сигнала ошибки для традиционной рэмсиевской схемы при различных значениях полевого сдвига $\Delta_{\rm sh}$. Графики сигналов ошибки для стабилизации сопутствующего параметра $\Delta_{\rm c}$ представлены на рис.3,*б*. На рис.3,*в* приведены сигналы ошибки для частотной стабилизации, когда $\Delta_{\rm c} = \bar{\Delta}_{\rm c}$. Видно, что полевой сдвиг в этом случае полностью подавлен, а сигналы ошибки полностью совпадают и имеют антисимметричную форму. Наконец, из рис.3,*г* следует, что частотный прыжок $\bar{\Delta}_{\rm c}$ линейно зависит от полевого сдвига: $\bar{\Delta}_{\rm c} = \Delta_{\rm sh}$.

4. Метод комбинированного сигнала ошибки для КПН-резонансов

Данный подход основан на возбуждении и опросе атомов при применении двух последовательностей рэмсиевских импульсов с различными временами свободной эволюции T_1 и T_2 . Однако, в отличие от ОАБРС, здесь используется только одна петля обратной связи, и сигнал ошибки для стабилизации частоты формируется как линейная суперпозиция двух обычных сигналов ошибки, полученных отдельно для каждой рэмсиевской последовательности:

$$S_{\rm err}^{\rm (CES)}(\delta_{\rm R}) = S_{\rm err}^{(T_{\rm i})}(\delta_{\rm R}) - \beta_{\rm cal} S_{\rm err}^{(T_{\rm 2})}(\delta_{\rm R}), \qquad (25)$$

где β_{cal} – некоторый калибровочный коэффициент. Стабилизируемая частота генератора соответствует условию, когда комбинированный сигнал ошибки равен нулю: $S_{err}^{(CES)}(\delta_R) = 0$. Подставляя (19) в выражение (25), получаем

$$S_{\text{err}}^{(\text{CES})}(\delta_{\text{R}}) = e^{-\Gamma T_{1}} \Big[\int_{t_{2}}^{t_{2}+\tau_{d}} (\boldsymbol{\Omega}(t), \hat{W}_{d}(t) \hat{\Upsilon}_{T_{1}} \hat{W}_{p} \boldsymbol{\rho}_{\text{in}}) dt - \beta_{\text{cal}} e^{\Gamma(T_{1}-T_{2})} \int_{t_{2}}^{t_{2}+\tau_{d}} (\boldsymbol{\Omega}(t), \hat{W}_{d}(t) \hat{\Upsilon}_{T_{2}} \hat{W}_{p} \boldsymbol{\rho}_{\text{in}}) dt \Big].$$
(26)

При выборе калибровочного коэффициента таким, что

$$\beta_{\rm cal} = e^{-\Gamma(T_1 - T_2)},$$
 (27)

выражение для комбинированного сигнала ошибки (26) может быть записано как

$$S_{\text{err}}^{(\text{CES})}(\delta_{\text{R}}) = e^{-\Gamma T_1} \int_{t_2}^{t_2 + \tau_{\text{d}}} (\boldsymbol{\Omega}(t), \hat{W}_{\text{d}}(t) \times (\hat{\Upsilon}_{T_1} - \hat{\Upsilon}_{T_2}) \hat{W}_{\text{p}} \boldsymbol{\rho}_{\text{in}}) dt.$$
(28)

Принимая во внимание равенство (23) для матриц $\hat{\Upsilon}_{T_1}$ и $\hat{\Upsilon}_{T_2}$ при $\delta_{\rm R} = 0$, из (28) получаем

$$S_{\rm err}^{\rm (CES)}(0) = 0.$$
⁽²⁹⁾

Рис.4. Сигналы ошибки для традиционной рэмсиевской схемы при $T = 0.5\Gamma^{-1}$ (*1*) и $0.05\Gamma^{-1}$ (*2*), а также комбинированный сигнал ошибки при $T_1 = 0.5\Gamma^{-1}$ и $T_2 = 0.05\Gamma^{-1}$ (*3*). Другие параметры модели: $\Delta_{\rm sh}/\Gamma = 7$, $\Omega_1 = \Omega_2 = 0.3\gamma_{\rm sp}$, $\gamma_{31} = \gamma_{32} = \gamma_{34} = \gamma_{\rm sp}/3$, $\gamma_{\rm opt} = 50\gamma_{\rm sp}$, $\Gamma = 5 \times 10^{-5}\gamma_{\rm sp}$, $p_1 = p_2 = 1/3$, $\tau_{\rm p} = \infty$ (стационарное состояние), $\tau_{\rm d} = 0.1\Gamma^{-1}$, $\alpha_{\rm r}^{\pm} = \pm \pi/2$.

Следовательно, проведенный анализ доказывает отсутствие полевого сдвига для частоты генератора, стабилизированной в нуле комбинированного сигнала ошибки (25) с калибровочным коэффициентом (27).

На рис.4 показаны сигналы ошибки для традиционной рэмсиевской схемы при двух различных временах свободной эволюции ($T_1/T_2 = 10$) и комбинированный сигнал ошибки в зависимости от рамановской отстройки $\delta_{\rm R}$. Видно, что при точном калибровочном коэффициенте $\beta_{\rm cal}$ (27) полевой сдвиг для КСО полностью подавлен. Однако в реальных условиях $\beta_{\rm cal}$ может отличаться от идеального значения, что приводит к появлению остаточного сдвига для КСО. Тем не менее, как показывают расчеты (рис.5), даже при ±5%-ном отклонении $\beta_{\rm cal}$ от идеального значения метод КСО обеспечивает подавление полевого сдвига примерно в 17 раз больше, чем традиционная рэмсиевская спектроскопия (с временем свободной эволюции T_1).

5. Заключение

В настоящей работе строго доказана применимость методов обобщенной автобалансной рэмсиевской спектроскопии и комбинированного сигнала ошибки для КПН-резонансов в открытой Λ -системе с ловушечным состоянием, которая моделирует случай D_1 -линии атомов щелочных металлов в бихроматическом циркулярнополяризованном поле. Полученные аналитические ре-

Рис.5. Сдвиги часовой частоты $\bar{\delta}_{clock}$ в зависимости от полевого сдвига Δ_{sh} для традиционной рэмсиевской схемы при $T = 0.5\Gamma^{-1}(I)$, а также для КСО при $T_1 = 0.5\Gamma^{-1}$ и $T_2 = 0.05\Gamma^{-1}$ в случае равенства калибровочного коэффициента β_{cal} идеальному значению (2) и при отклонении β_{cal} на +5% и -5% от идеального значения (3 и 4 соответственно). Другие параметры модели: $\Omega_1 = \Omega_2 = 0.3\gamma_{sp}$, $\gamma_{31} = \gamma_{32} = \gamma_{34} = \gamma_{sp}/3$, $\gamma_{opt} = 50\gamma_{sp}$, $\Gamma = 5 \times 10^{-5}\gamma_{sp}$, $p_1 = p_2 = 1/3$, $\tau_p = \infty$ (стационарное состояние), $\tau_d = 0.1\Gamma^{-1}$, $\alpha_r^{\pm} = \pm \pi/2$.

зультаты сопровождаются численными расчетами, демонстрирующими высокую эффективность подавления полевого сдвига и его флуктуаций. Применительно к методу ОАБРС рассмотрен вариант, когда для подавления полевого сдвига сопутствующим параметром является дополнительный частотный прыжок в величине рамановской отстройки. Реализация методов ОАБРС и КСО позволит значительно улучшить долговременную стабильность (до уровня ниже 10⁻¹⁴) и точность КПН-часов. Указанные методы могут найти применение в атомных КПН-магнитометрах и интерферометрах. Преимуществом данных спектроскопических схем также является их высокая устойчивость к различным искажениям формы импульсов, релаксационным процессам, ошибкам в формировании фазовых прыжков и т.д.

Работа выполнена при финансовой поддержке гранта Президента РФ (МК-161.2020.2), РФФИ (гранты № 19-32-90181, 20-02-00505, 20-52-18004, 19-29-11014), Министерства науки и высшего образования РФ (FSUS-2020-0036), фонда развития теоретической физики и математики «БАЗИС» (проект № 19-1-1-67-2).

Приложение

Лиувиллиан, определяемый уравнениями (3)–(5), имеет вид

($(1-p_1)\Gamma$	0	0	$p_1\Gamma$	$-i\Omega_1$	$\mathrm{i} arOmega_1^*$	0	0	$\gamma_{31} + p_1\Gamma$	$p_1\Gamma$	
	0	$-\Gamma - i(\delta_R - \Delta_{sh})$	0	0	$-i\Omega_2$	0	0	$\mathrm{i} arOmega_1^*$	0	0	
	0	0	$-\Gamma + i(\delta_R - \Delta_{sh})$	0	0	$\mathrm{i} arOmega_2^*$	$-i\Omega_1$	0	0	0	
	$p_2\Gamma$	0	0	$-(1-p_2)\Gamma$	0	0	$-i\Omega_2$	$\mathrm{i} arOmega_2^*$	$\gamma_{32} + p_2\Gamma$	$p_2\Gamma$	
	$-\mathrm{i} arOmega_1^*$	$-i\Omega_2^*$	0	0	$-\gamma_{opt} - i\delta_1$	0	0	0	$\mathrm{i} arOmega_1^*$	0	
	$i\Omega_1$	0	$i\Omega_2$	0	0	$-\gamma_{opt} + i\delta_1$	0	0	$-i\Omega_1$	0	•
	0	0	$-\mathrm{i} arOmega_1^*$	$-i \Omega_2^*$	0	0	$-\gamma_{opt} - i\delta_2$	0	$\mathrm{i} \Omega_2^*$	0	
	0	$i\Omega_1$	0	$\mathrm{i}\Omega_2$	0	0	0	$-\gamma_{opt} + i\delta_2$	$-i\Omega_2$	0	
	0	0	0	0	$i\Omega_1$	$-i\Omega_1^*$	$i\Omega_2$	$-i\Omega_2^*$	$-\gamma_{\rm sp}-\Gamma$	0	
	$(1-p_1-p_2)\Gamma$	0	0	$(1-p_1-p_2)\Gamma$	0	0	0	0	$\gamma_{34} + (1 - p_1 - p_2)\Gamma$	$-(p_1+p_2)\Gamma$	

$$\hat{L} =$$

В отсутствие светового поля ($\Omega_1 = \Omega_2 = 0$ и $\Delta_{\rm sh} = 0$) лиувиллиан

	$(-(1-p_1)\Gamma)$	0	0	$p_1\Gamma$	0	0	0	0	$\gamma_{31} + p_1\Gamma$	$p_1\Gamma$	
	0	$-\Gamma - \mathrm{i} \delta_R$	0	0	0	0	0	0	0	0	
	0	0	$- \varGamma + i \delta_R$	0	0	0	0	0	0	0	
	$p_2\Gamma$	0	0	$-(1-p_2)\Gamma$	0	0	0	0	$\gamma_{32} + p_2 \Gamma$	$p_2\Gamma$. (П2)
î –	0	0	0	0	$-\gamma_{opt} - i\delta_1$	0	0	0	0	0	
$L_0 =$	0	0	0	0	0	$-\gamma_{opt} + i\delta_1$	0	0	0	0 .	
	0	0	0	0	0	0	$-\gamma_{opt} - i\delta_2$	0	0	0	
	0	0	0	0	0	0	0	$-\gamma_{opt} + i\delta_2$	0	0	
	0	0	0	0	0	0	0	0	$-\gamma_{\rm sp}-\Gamma$	0	
	$(1-p_1-p_2)\Gamma$	0	0	$(1-p_1-p_2)\Gamma$	0	0	0	0	$\gamma_{34} + (1-p_1-p_2) \varGamma$	$-(p_1+p_2)\Gamma$	

Оператор $\hat{G}_T = e^{\hat{L}_0 T}$, описывающий свободную эволюцию атомов, определяется как

где

$$G_{11} = p_1 + (1 - p_1) \mathrm{e}^{-\Gamma T};$$

$$G_{14} = G_{1,10} = p_1(1 - e^{-TT})$$

$$G_{19} = \frac{p_1(\gamma_{31} + \gamma_{32} + \gamma_{34} + \Gamma)}{\gamma_{sp} + \Gamma} + \frac{(1 - p_1)\gamma_{31} - p_1(\gamma_{32} + \gamma_{34})}{\gamma_{sp}} e^{-\Gamma T}$$

$$-\frac{\gamma_{\rm sp}(\gamma_{31}+p_1\Gamma)+\Gamma[(1-p_1)\gamma_{31}-p_1(\gamma_{32}+\gamma_{34})]}{\gamma_{\rm sp}(\gamma_{\rm sp}+\Gamma)}e^{-(\gamma_{\rm sp}+\Gamma)T};$$

$$G_{41} = G_{4,10} = p_2(1 - e^{-\Gamma T});$$

$$G_{44} = p_2 + (1 - p_2) e^{-\Gamma T};$$

$$G_{49} = \frac{p_2(\gamma_{31} + \gamma_{32} + \gamma_{34} + \Gamma)}{\gamma_{\rm sp} + \Gamma} + \frac{(1 - p_2)\gamma_{32} - p_2(\gamma_{31} + \gamma_{34})}{\gamma_{\rm sp}} e^{-\Gamma T}$$

$$-\frac{\gamma_{\rm sp}(\gamma_{32}+p_2\Gamma)+\Gamma[(1-p_2)\gamma_{32}-p_2(\gamma_{31}+\gamma_{34})]}{\gamma_{\rm sp}(\gamma_{\rm sp}+\Gamma)}e^{-(\gamma_{\rm sp}+\Gamma)T};$$

$$G_{10,1} = G_{10,4} = (1 - p_1 - p_2)(1 - e^{-\Gamma T});$$

$$G_{10,9} = \frac{(1 - p_1 - p_2)(\gamma_{31} + \gamma_{32} + \gamma_{34} + \Gamma)}{\gamma_{sp} + \Gamma}$$

$$+\frac{(p_1+p_2)\gamma_{34}-(1-p_1-p_2)(\gamma_{31}+\gamma_{32})}{\gamma_{\rm sp}}{\rm e}^{-\Gamma T}$$

$$-\left[\frac{\gamma_{\rm sp}[\gamma_{34} + (1 - p_1 - p_2)\Gamma] + \Gamma(p_1 + p_2)\gamma_{34}}{\gamma_{\rm sp}(\gamma_{\rm sp} + \Gamma)} - \right]$$

$$-\frac{\Gamma(1-p_1-p_2)(\gamma_{31}+\gamma_{32})}{\gamma_{\rm sp}(\gamma_{\rm sp}+\Gamma)}\bigg]e^{-(\gamma_{\rm sp}+\Gamma)T};$$

$$G_{10,10} = 1 - p_1 - p_2 + (p_1 + p_2)e^{-II}$$

- 1. Riehle F. *Frequency Standards: Basics and Applications* (New York: Wiley-VCH, 2005).
- 2. Ludlow A.D. et al. Rev. Mod. Phys., 87, 637 (2015).
- 3. Kajita M. Measuring Time: Frequency Measurements and Related Developments in Physics (Bristol: Institute of Physics, 2018).
- 4. Prestage J.D., Weaver G.L. Proc. IEEE, 95, 2235 (2007).
- 5. Mehlstäubler T.E. et al. Rep. Prog., 81, 064401 (2018).
- 6. Maleki L., Prestage J. *Metrologia*, **42**, S145 (2005).
- 7. Derevianko A., Pospelov M. Nature Phys., 10, 933 (2014).
- 8. Alzetta G. et al. Nuovo Cimento B, 36, 5 (1976).
- 9. Агапьев Б.Д. и др. УФН, 163, 1 (1993) [Phys. Usp., 36, 763 (1993)].
- 10. Arimondo E. Prog. Opt., 35, 257 (1996).
- 11. Vanier J. Appl. Phys. B, 81, 421 (2005).
- 12. Shah V., Kitching J. Adv. At., Mol., Opt. Phys., 59, 21 (2010).
- 13. Knappe S. et al. Opt. Express, 13, 1249 (2005).
- 14. Wang Z. Chin. Phys. B, 23, 030601 (2014).
- 15. Kitching J. Appl. Phys. Rev., **5**, 031302 (2018).
- 16. Ramsey N.F. *Phys. Rev.*, **78**, 695 (1950).
- 17. Yudin V.I. et al. Phys. Rev. A, 82, 011804(R) (2010).
- 18. Huntemann N. et al. Phys. Rev. Lett., 109, 213002 (2012).
- 19. Huntemann N. et al. Phys. Rev. Lett., 116, 063001 (2016).
- 20. Hobson R. et al. Phys. Rev. A, 93, 010501(R) (2016).
- 21. Zanon-Willette T. et al. Phys. Rev. A, 92, 023416 (2015).
- 22. Zanon-Willette T., de Clercq E., Arimondo E. Phys. Rev. A, 93, 042506 (2016).
- 23. Yudin V.I. et al. Phys. Rev. A, 94, 052505 (2016).
- 24. Zanon-Willette T. et al. Rep. Prog. Phys., 81, 094401 (2018).
- 25. Sanner C. et al. Phys. Rev. Lett., 120, 053602 (2018).
- 26. Yudin V.I. et al. Phys. Rev. Appl., 9, 054034 (2018).
- 27. Yudin V.I. et al. New J. Phys., 20, 123016 (2018).
- 28. Abdel Hafiz M. et al. Phys. Rev. Appl., 9, 064002 (2018).
- 29. Abdel Hafiz M. et al. Appl. Phys. Lett., 112, 244102 (2018).
- 30. Shuker M. et al. Phys. Rev. Lett., 122, 113601 (2019).
- 31. Shuker M. et al. Appl. Phys. Lett., 114, 141106 (2019).
- 32. Basalaev M.Yu. et al. Phys. Rev. A, 102, 013511 (2020).