# Лазерная генерация и фрагментация наночастиц селена в воде и их тестирование в качестве добавки к удобрениям

Г.А.Шафеев, Е.В.Бармина, Н.Пимфа, И.И.Раков, А.В.Симакин, М.Г.Шарапов, О.В.Уваров, С.В.Гудков

Экспериментально исследована генерация наночастиц селена в воде и их лазерная фрагментация при использовании неодимового лазера с частотой следования импульсов 10 кГц и средней мощностью 20 Вт. Распределение наночастиц селена по размерам определялось с помощью измерительной дисковой центрифуги. Морфология частиц исследована с помощью просвечивающей электронной микроскопии. Установлено, что при лазерной абляции селеновой мишени в воде образуются в основном субмикронные частицы, а для получения наночастиц селена размером около 100 нм необходима их лазерная фрагментация в растворе. Полученные наночастицы селена использовались как добавки к почве, в которой выращивался ряд сельскохозяйственных культур. Установлено оптимальное содержание селена в почве.

Ключевые слова: лазерная абляция, жидкость, наночастицы, селен, удобрения.

## 1. Введение

Селен – это микроэлемент, необходимый для функционирования большинства живых существ и всех млекопитающих, он присутствует в почве, воде, сельскохозяйстственных культурах и продуктах животного происхождения [1]. Пища является основным источником Se, таким образом, потребление селена зависит от количества пищи [2] и от его содержания в ней. Повышение концентрации селена в культивируемых растениях может быть достигнуто путем добавления селена или его соединений во вносимые в почву удобрения. К настоящему времени предпринимались попытки применять как органические (селеносодержащие аминоксислоты, хелаты и т.д.), так и неорганические (оксиды, соли и минералы) соединения селена в качестве удобрений. Однако неорганические соединения селена вымываются дождями в неплодородный горизонт грунта, а органические хотя и не вымываются активно, но подвергаются быстрой деструкции. Наноразмерный селен в нульвалентном состоянии вызывает большой интерес в качестве сопутствующей добавки к

Поступила в редакцию 26 мая 2021 г.

удобрениям. Во-первых, наночастицы долго не вымываются в неплодородные горизонты, и, во-вторых, нульвалентный селен не растворяется в воде и водных растворах, поэтому его переход в растения происходит в результате постепенного окисления поверхности наночастиц и высвобождения в виде оксидов.

Содержание селена в почве различных стран и, следовательно, в выращенных на ней растениях может сильно различаться [3]. Актуальность настоящей работы обусловлена недавними результатами международной группы исследователей, сообщивших о корреляции между содержанием селена в почве и смертностью от COVID-19 по различным регионам Китая [4]. Различие в показателях смертности между регионами с разным содержанием селена составило до 5 раз.

Наночастицы селена ранее были получены с помощью лазерной абляции селеновой мишени в воде [5]. Использовался лазер на парах меди со средней мощностью 8 Вт на обеих линиях генерации (510.6 и 578.2 нм) и с длительностью импульсов 15 нс. Размер полученных наночастиц селена составлял менее 100 нм. В цикле последующих тестов на лабораторных животных была показана биосовместимость наночастиц селена и определена его необходимая доза в организме [6]. В настоящей работе для получения наночастиц селена использовался импульсный лазер ближнего ИК диапазона со средней мощностью 20 Вт. Переход к большей длине волны излучения позволил уменьшить влияние рассеяния лазерного излучения на уже образовавшиеся наночастицы селена в воде и увеличить скорость их генерации. После получения основной массы частиц селена проводилась их последующая фрагментация с использованием того же лазерного источника. Процесс лазерной фрагментации подробно описан в литературе [7-13] и состоит в лазерном облучении коллоидного раствора микро- или наночастиц, при котором перетяжка лазерного пучка находится в растворе. В процессе взаимодействия лазерного излучения с отдельными частицами последние подвергаются плавлению и делению на более мелкие части. Полученные наночастицы

Г.А.Шафеев. Институт общей физики им. А.М.Прохорова РАН, Россия, 119991 Москва, ул. Вавилова, 38; Национальный исследовательский ядерный университет «МИФИ», Россия, 115409 Москва, Каширское ш., 31; e-mail: gashafeev@gmail.com

**Е.В.Бармина, Й.И.Раков, А.В.Симакин, О.В.Уваров.** Институт общей физики им. А.М.Прохорова РАН, Россия, 119991 Москва, ул. Вавилова, 38

**N.Pimpha.** National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111, Phahonyotin Rd, Klong Luang, Pathumthani, 12120 Thailand

**М.Г.Шарапов.** Институт биофизики клетки РАН, Россия, Московская обл., 142290 Пущино, Институтская ул., 3

С.В.Гудков. Институт общей физики им. А.М.Прохорова РАН, Россия, 119991 Москва, ул. Вавилова, 38; Институт биофизики клетки РАН, Россия, Московская обл., 142290 Пущино, Институтская ул., 3

селена затем были добавлены в почву, в которой проращивалась рассада ряда сельскохозяйственных культур, для определения оптимальной концентрации селена в почве.

## 2. Эксперимент

Наночастицы селена были получены с помощью лазерной абляции селеновой мишени в воде. В качестве лазерного источника использовался неодимовый лазер с энергией импульсов 2 мДж, длиной волны 1064 нм и частотой следования импульсов 10 кГц. Длительность импульсов составляла 10 нс. Облучение проводилось в два этапа. На первом этапе лазер облучал селеновую мишень, находящуюся в проточном реакторе с водой (рис.1).

Перетяжка лазерного пучка находилась в потоке коллоидного раствора наночастиц. Поскольку порог абляции селена составляет около 1 Дж/см<sup>2</sup>, то расфокусированный на мишени лазерный пучок обеспечивает поступление новых наночастиц в циркулирующий раствор. Уже образовавшиеся наночастицы селена при прохождении области перетяжки лазерного пучка могут подвергаться дальнейшей фрагментации. Селен – хрупкий материал, и первичные наночастицы, образующиеся в результате абляции мишени, имеют субмикронные размеры. Поэтому наночастицы, полученные в такой схеме, подвергались лазерной фрагментации – облучению коллоидного раствора наночастиц уже в отсутствие мишени.

Распределение наночастиц селена по размерам исследовалось с помощью измерительной центрифуги DC24000 (CPS Instruments). Для этого 100 мкл коллоидного раствора впрыскивалось на диск, совершающий 20000 обор./мин. Морфология наночастиц селена изучалась с помощью просвечивающего электронного микроскопа (ПЭМ) JEM 2100 (Jeol) с ускоряющим напряжением 200 кэВ, а также в режиме рассеянных электронов (STEM).

Внесение наночастиц селена в почву осуществляли при концентрациях раствора 1, 5, 10 и 25 мкг/кг. Для этого начальный коллоидный раствор наночастиц разбавлялся водой так, чтобы на 1 кг почвы вносилось 100 г селенсодержащего раствора. После этого, для однородного распределения наночастиц, почва подвергалась механическому перемешиванию. Выращивание редиса и рукколы (Radish и Arugula) в почвах с различным содержанием се-



1 – лазерный пучок; 2 – мишень из селена; 3 – коллоидный раствор частиц селена; 4 – перетяжка лазерного пучка. Стрелки указывают направление прокачки коллоидного раствора.

Рис.2. ПЭМ-снимок частиц селена, полученных при лазерной абляции мишени, в режиме STEM.

лена при стандартных условиях (освещение 16 ч/сут., температура 22 °C) проводили в климатической камере. Измерялась площадь листьев в зависимости от времени проращивания и количества добавленных в почву наночастиц селена.

### 3. Результаты и обсуждение

Скорость генерации частиц селена в проточной кювете составляет 2.4 мг/мин [14], однако не все частицы имеют малые размеры. На рис.2 показан ПЭМ-снимок частиц селена. Большинство из них имеют сферическую форму, это свидетельствует о том, что в воду кюветы они попадали в расплавленном состоянии. Поскольку температура плавления селена составляет всего лишь 250 °C, поверхностное натяжение расплава придает частицам сферическую форму.

Максимум массы полученных после абляции мишени частиц селена лежит вблизи размера 400 нм [14]. Полученная суспензия микро- и наночастиц селена в воде подвергалась лазерной фрагментации с использованием того же лазерного источника. Распределение массы наночастиц по размерам после фрагментации показано на рис.3.

Рис.3. Распределение массы наночастиц по размерам в пробе коллоидного раствора объемом 100 мкл при времени фрагментации 90 (1), 180 (2) и 210 (3) мин.





Видно, что в результате достаточно продолжительной фрагментации основная масса наночастиц имеет размеры в диапазоне 100–150 нм. Максимальное число частиц имеет малые (менее 100 нм) размеры, поскольку число частиц N и их масса m находятся в очевидном соотношении:  $N = 3m/4\pi\rho R^3$ , где  $\rho$  – плотность селена и R – радиус частицы.

Как видно из рис.4, б, малые наночастицы селена (размером порядка 10 нм) имеют выраженную кристаллическую структуру. Ранее утверждалось, что малые наночастицы селена, полученные с помощью лазерной абляции, являются аморфными в соответствии с рентгеновской дифрактограммой [14]. Действительно, ширина пика дифракции селена позволяла сделать вывод об их аморфности. Однако полученные в настоящей работе данные позволяют утверждать, что этот вывод верен лишь частично. Малые частицы являются кристаллическими, а уширение дифракционного пика селена могло быть обусловлено малостью размера частиц.

Добавление наночастиц селена в почву приводит к изменению скорости роста ряда растений. На рис.5 показаны зависимости площади листьев редиса и рукколы от концентрации селена. Видно, что оптимальная концентрация селена в почве составляет 5–10 мкг/кг.





б

Рис.4. Общий (*a*) и увеличенный (*б*) виды наночастиц селена, полученные с помощью ПЭМ высокого разрешения. Стрелки указывают направления различимых кристаллографических плоскостей отдельных частиц.



Рис.5. Зависимость площади листьев редиса (*a*) и рукколы (б) от концентрации селена в почве при временах проращивания 5 (**n**), 10 (**o**) и 30 сут. (**a**). Начальная концентрация селена в почве равна 2–4 мкг/кг.

Кроме площади листьев также измерялся вес корнеплодов редиса. Показано, что при выращивании редиса в почве с добавлением наночастиц селена в концентрации 5 и 10 мкг/кг в течение 30 суток наблюдалось почти на 20% более быстрое накопление биомассы по сравнению с контролем, а к 30 суткам происходило почти полное созревание корнеплода. Очевидно, что при этом селен входит в биомассу выращиваемых растений.

### 4. Заключение

С использованием импульсного неодимового лазера высокой средней мощности экспериментально реализована генерация частиц селена и последующая их фрагментация до размеров наночастиц. Установлено, что стадия лазерной фрагментации является необходимой, поскольку исходные частицы имеют субмикронный размер. Изображения наночастиц селена, полученные с помощью просвечивающей электронной микроскопии высокого разрешения, показывают, что даже малые наночастицы селена размером порядка 10 нм имеют кристаллическую структуру. Показано, что наночастицы нульвалентного селена, получаемые лазерной абляцией и фрагментацией селена в воде, могут служить эффективной добавкой к сельскохозяйственным удобрениям. Оптимальная концентрация селена в почве составляет 7–12 мкг/кг. Работа выполнена при поддержке РФФИ (грант №18-52-70012 е-Аsia), а также в рамках Программы повышения конкурентоспособности НИЯУ МИФИ (контракт №02.a03.21.005 от 27.08.2013). Авторы выражают благодарность Центру коллективного пользования ИОФ РАН за полученные ПЭМ-изображения наночастиц.

- 1. Rosenfeld I., Beath O.A. *Selenium: Geobotany, Biochemistry, Toxicity and Nutrition* (New York, London: Acad. Press, 1964).
- 2. Rayman M.P. Lancet, 379, 1256 (2012).
- Dinh Q.T., Cui Z., Huang J., Tran T.A.T., Wang D., Yang W., Zhou F., Wang M., Yu D., Liang D. *Environ. Int.*, **112**, 294 (2018).
- Zhang J., Taylor E.W., Bennett K., Saad R., Rayman M.P. Am. J. Clin. Nutr., 111 (6), 1297 (2020).
- Кузьмин П.Г., Шафеев Г.А., Воронов В.В., Распопов Р.В., Арианова Е.А., Трушина Э.Н., Гмошинский И.В., Хотимченко С.А. Квантовая электроника, 42 (11), 1042 (2012) [Quantum Electron., 42 (11), 1042 (2012)].

- Распопов Р.В., Арианова Е.А., Трушина Е.Н., Мальцев Г.Ю., Кузьмин П.Г., Шафеев Г.А., Придворова С.М., Гмошинский И.В., Хотимченко С.А. *Вопросы питания*, № 4, 36 (2011).
- 7. Prochazka M. et al. Anal. Chem., 69, 5103 (1997).
- 8. Ziefuss A.R. et al. J. Phys. Chem. C, 122, 22125 (2018).
- 9. Delfour L. et al. J. Phys. Chem. C, 119, 13893 (2015).
- 10. Pyatenko A. et al. Laser Photon. Rev., 7 (4), 596 (2013).
- Kuzmin P.G., Shafeev G.A., Serkov A.A., Kirichenko N.A., Shcherbina M.E. *Appl. Surf. Sci.*, **294**, 15 (2014).
- 12. Zhang D., Gökce B., Barcikowski S. Chem. Rev., 117, 3990 (2017).
- Amendola V., Amans D., Ishikawa Y., Koshizaki N., Sciré S., Compagnini G., Reichenberger S., Barcikowski S. *Chem. Eur. J.*, 26, 9206 (2020).
- Ayyyzhy K.O., Voronov V.V., Gudkov S.V., Rakov I.I., Simakin A.V., Shafeev G.A. *Phys. Wave Phen.*, 27 (2), 113 (2019).